viernes, 24 de septiembre de 2010

Permutaciones y combianaciones

Una permutación es un arreglo de un conjunto de $N $ objetos en un orden definido. El número de permutaciones diferentes de estos $N $ objetos es $N!$; esto se vé fácilmente si pensamos que para la primera alternativa disponemos de los $N $ elementos del conjunto, cada uno de los cuales puede complementarse con los $(N-1) $ restantes como segunda opción, y así hasta llegar a la última elección, conformando el producto $N\cdot(N-1)\cdot\dots\cdot1=N!$.
El número de permutaciones posibles al tomar $R $ objetos del conjunto de $N $ elementos será, siguiendo el mismo razonamiento,

Una combinación de objetos es un arreglo de éstos en el que el orden no importa. Para encontrar el número de combinaciones de n objetos en grupos de r, se usa la siguiente fórmula:

EJEMPLOS:

A) ¿Cuántas cantidades de tres cifras se pueden formar con los dígitos 0, 1, 2, 3 y 4 si no se permite la repetición? Solución:

.
B) ¿Cuántas cantidades de cuatro cifras se pueden formar con los dígitos 0, 1, 2, 3 y 4 si se permite la repetición? Solución:

.
C) De entre 8 personas debemos formar un comité de cinco miembros. ¿Cuántas diferentes posibilidades existen para formar el comité? Solución: Esta es una combinación porque el orden no importa.

No hay comentarios:

Publicar un comentario